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Abstract

This paper examines whether the value of an informative signal varies with
the size of the signal space, representing the number of possible signals. In
our experiment, subjects either make a signal purchasing decision (SPD) while
predicting the binary outcomes of compound lotteries or make a lottery pur-
chasing decision (LPD) while the lottery includes a free signal regarding the
outcome. We tested four distinct lotteries, each associated with varying signal
space sizes, yet maintaining identical informational value across signals. Our
findings revealed a fascinating dichotomy: in the SPD, subjects are willing to
pay more for a signal from a larger signal space, whereas in the LPD, their
willingness to pay for a lottery is not associated with the size of the signal. To
explain experimental findings, we introduce a novel theoretical framework that
integrates reference point theory with uncertainty about a variable of interest,
represented by Shannon’s entropy.
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1 Introduction

Information transmission is fundamental in economic decision-making, yet how the

size of signal spaces—the number of possible signals—affects individuals’ demand for

information has received relatively little attention. Classical economic models, such

as those developed by Spence (1973) and Kamenica and Gentzkow (2011), show that

signal spaces matching the action spaces are sufficient for effective signaling within

the framework of expected utility theory. Although this insight simplifies theoretical

analyses by demonstrating that larger signal spaces are unnecessary for informational

efficiency, it does not address whether individuals might intrinsically value having

more or fewer signals available, independent of their instrumental informational con-

tent. Given the prevalence and importance of these models, it is therefore crucial to

empirically investigate whether signal space size itself influences information valua-

tion, a possibility that standard expected utility frameworks do not consider.

A sufficiently large signal space can, in principle, allow for more precise signal-

ing and thus facilitate better-informed decisions, mitigating inefficiencies inherent in

coarse signaling environments (Crawford and Sobel, 1982; Heumann, 2020). However,

from a behavioral perspective, increasing the size of the signal space might introduce

complexity, potentially discouraging information acquisition. Cognitive constraints

and complexity aversion, well-documented in the literature, suggest that individuals

might favor simpler signal spaces due to the psychological costs and interpretative

burdens associated with more complex structures (Huck and Weizsäcker, 1999; Son-

sino et al., 2002; Halevy, 2007; Moffatt et al., 2015).1 Thus, empirical evaluation is

needed to determine whether, and how, individuals respond to changes in signal space

size beyond purely instrumental considerations.

We conducted a controlled laboratory experiment specifically designed to isolate

whether the size of a signal space affects how individuals value information, even when

the informational content remains constant. Specifically, in our primary experimental
1See Section 5.1 for further analysis of how complexity relates to signal space preferences.
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condition—the Signal Purchasing Decision (SPD)—subjects were asked to state their

willingness to pay for signals that inform predictions about outcomes from compound

lotteries. A distinctive feature of our experimental design is that we systematically

varied the size of the signal spaces (from two to five signals) while holding constant

the informational content across all signals in terms of expected utility theory. Ac-

cording to expected utility theory, subjects should thus exhibit indifference regarding

signal space size if informational content remains unchanged. Contrary to this theo-

retical expectation, our findings indicate that subjects’ willingness to pay for signals

consistently increases with larger signal spaces, even though the signals provide no

additional instrumental value.

To explore this unexpected result, we conducted two follow-up studies to evaluate

possible explanations. One possible explanation might be that subjects may not have

fully understood the informational value of compound lotteries, potentially misinter-

preting or failing to reduce them according to expected utility principles. To address

this, we ran a robustness study involving lotteries with explicitly varying values of

information. Results from this robustness check indicated that subjects rationally rec-

ognized and responded to differences in informational content, suggesting that their

valuation in the SPD was not driven by misunderstandings or cognitive errors related

to compound lottery structures.

Another explanation is that subjects perceived the value of a lottery as higher

when the associated signal was from a larger signal space, even though the signal itself

conveyed no additional information. To test this possibility, we conducted the Lottery

Purchasing Decision (LPD), a supplementary condition in which signals were provided

for free, and subjects were asked to state their willingness to pay to participate in

the lotteries. Contrary to the results observed in the SPD, in this LPD scenario, the

size of the signal space was not significantly associated with subjects’ willingness to

pay for lotteries. This contrast suggests that the willingness to pay observed in the

SPD does not reflect a general preference for larger signal spaces per se, but rather a
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context-dependent response.

To reconcile these seemingly contradictory findings between the SPD and the

follow-up studies, we propose a novel theoretical framework grounded in Shannon’s

entropy (Shannon, 1948), which quantifies the reduction in uncertainty. Our cen-

tral insight is that individuals derive non-instrumental (or intrinsic) utility from the

mere resolution of uncertainty itself, independent of any instrumental benefits. This

non-instrumental motivation, which we interpret as a form of curiosity, is naturally

represented by entropy reduction—a measure of how much a signal reduces the un-

predictability of random variables of interest. Specifically, we show that subjects’

willingness to pay for signals is systematically related to the amount of uncertainty

those signals resolve. This perspective extends traditional economic models, which,

under the expected utility framework, characterize the value of information solely in

terms of its contribution to improving decision outcomes. Additionally, to account

for the contextual differences observed across experimental conditions, we incorpo-

rate concepts from reference-dependent valuation. Taken together, these theoretical

innovations provide a more comprehensive understanding of how individuals value in-

formation, highlighting the critical role of non-instrumental motivations—particularly

curiosity—in information acquisition.

This paper makes three key contributions to the literature on information val-

uation. First, it introduces a novel experimental design that isolates whether the

size of a signal space affects how individuals value information. By varying signal

space size while holding informational content constant in terms of expected utility

theory, the design allows for a clean identification of the role of non-instrumental

considerations. Second, using this design, we provide new empirical evidence that

disentangles non-instrumental from instrumental motives for acquiring information,

demonstrating that individuals value uncertainty reduction even when it yields no

instrumental benefit. Third, we propose a theoretical framework that incorporates

non-instrumental motivations, quantified via entropy reduction, alongside standard
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instrumental reasoning. This framework accounts for observed patterns in willingness

to pay across different informational contexts.

The remainder of the paper proceeds as follows. In Section 2, we detail our main

treatment, SPD, outlining theoretical predictions based on expected utility and pre-

senting empirical findings. Section 3 presents robustness checks and supplementary

experimental evidence to further clarify observed behaviors. Section 4 presents our

theoretical framework, incorporating non-instrumental motivations. Section 5 situ-

ates our findings within broader theoretical contexts, and Section 6 discuss related

literature. We conclude with Section 7.

2 Main Treatment: Signal Purchasing Decision

2.1 Experimental Design

In our main treatment, the Signal Purchasing Decision (SPD) includes four lotteries,

illustrated in Figure 1. In the experiment, subjects play all four lotteries. For each

lottery, multiple boxes are available, each containing ten balls that are either red

or blue. The computer randomly selects one box, with each box having an equal

probability of being chosen. Then, one ball is drawn at random from the selected

box. Before the draw, subjects are asked to predict the color of the ball. A correct

prediction earns 100 points, with each point equivalent to 0.01 USD.

Each box is labeled as Box Xn, where X ∈ {R,B,G} and n ∈ {5, 6, 7, 8, 9}.2

Here, X signifies the predominant color of the balls contained within the box, and

n indicates the total count of balls of that color. For instance, Box R7 contains

a majority of red balls, specifically seven red balls.3 Note that Box G5 is the sole
2Ambuehl and Li (2018) elicited the demand for informative signals and found that people sig-

nificantly prefer information that may lead to certainty. Therefore, to avoid the certainty effect, we
exclude the box of n = 10.

3In the actual experiment, the boxes were referred to as Box R, Box B, Box G, Box RR (if there
were multiple Box R in the same lottery), and Box BB (if there were multiple Box B in the same
lottery). Numerical labels were deliberately avoided to encourage subjects to rely more on intuition.
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Figure 1: Four lotteries

instance of Box Gn, as Box G invariably holds five red balls and five blue balls,

maintaining an equal distribution between the two colors.

Before making their prediction, subjects had the option to purchase a costly signal

using their 100-point endowment. In each lottery, we elicited their willingness to pay

(WTP) for the signal using the Becker-DeGroot-Marschak (BDM) mechanism (Becker

et al., 1964), described below. Depending on the outcome of the BDM mechanism,

subjects either received the signal or not. If a subject received a signal, the computer

revealed the box that had been randomly selected for that lottery, and the subject

then made their color prediction with this information. For example, in Lottery 2

(Box R8, G5, and B8), a subject who received the signal and learned that Box R8

was selected would know that betting on red gives an 80% chance of winning, rather

than 50% without the signal. If the subject did not receive a signal, they made their

prediction without knowing which box had been selected. In this case, the probability

of winning remained 50%, regardless of their guess. The full sequence of events for

each lottery is illustrated in Figure 2.
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Box selected Signal Outcome

WTP for signals Prediction

Figure 2: Timeline of Signal Purchasing Decision

To elicit WTP, we used the BDM mechanism (Becker et al., 1964) in a multiple

price list format. The structure of the BDM questions is shown in Table 1. Instead of

submitting 100 separate decisions, subjects indicated the highest price at which they

were willing to purchase the signal, thereby identifying a “switching point” between

Option A (purchasing the signal at a given price) and Option B (not purchasing it).4

After subjects submitted their WTP (i.e., switching point) for the signal, a random

number between 1 and 100 was drawn for each lottery to determine the signal price. If

the stated WTP exceeded the drawn price, the subject received the signal; otherwise,

they did not. They then proceeded to make their prediction for that lottery.

Q# Option A Choices Option B

1 Buying a Signal for 1 point Not Buying a Signal
2 Buying a Signal for 2 points Not Buying a Signal
3 Buying a Signal for 3 points Not Buying a Signal
4 Buying a Signal for 4 points Not Buying a Signal
...

...
...

...
97 Buying a Signal for 97 points Not Buying a Signal
98 Buying a Signal for 98 points Not Buying a Signal
99 Buying a Signal for 99 points Not Buying a Signal
100 Buying a Signal for 100 points Not Buying a Signal

Table 1: The BDM mechanism in the SPD

4A common issue with the BDM mechanism is its complexity, which can lead to biased responses
in some settings. See Noussair et al. (2004) for a discussion. To minimize confusion, subjects reported
their maximum willingness to pay directly rather than responding to 100 separate price options.
Before making their actual decisions, subjects were also shown a worked example illustrating how
the BDM mechanism operates. Importantly, any potential bias in stated values—whether upward
or downward—does not undermine the purpose of using BDM in our study, which is to compare
relative valuations across signals and lotteries rather than to elicit precise point estimates.
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2.2 Procedural Details

This paper includes three between-subjects studies: the main treatment, SPD, which

is discussed in the preceding subsection, and two follow-up studies presented in Sec-

tion 3.1. In each study, subjects made lottery-related decisions specific to that study,

and then responded to an ambiguity attitude question described in Appendix D. One

of the decisions made in each study was randomly selected for payment, and subjects

earned points based on the outcome of their decision. Each point was equivalent to

0.01 USD.

A total of 467 subjects participated in the experiments through Prolific, which

is an online platform for recruiting research participants.5 Specifically, 179 subjects

took part in the SPD, and 130 and 158 subjects participated in the follow-up studies:

the SPD with Varying VOI and the LPD, respectively. On average, subjects spent

10 minutes and earned $3.32, including a $2.20 base payment.

2.3 Theoretical Considerations and Hypotheses

A critical aspect of this experiment is the diversity in the quantity of boxes present

in each lottery, which directly translates to the varying number of available signals:

Lottery 1 has two boxes, Lottery 2 has three, Lottery 3 has four, and Lottery 4

has five. Notably, despite these differences, the ex-ante value of information remains

constant across all lotteries. The value of information, In this context, the value of

information is defined as the difference between the expected utility with the signal

and the expected utility without it. This can be explained by expected utility theory,

which posits that the value derived from obtaining information (or signals, in this

case) is essentially the utility gain from making a more informed decision versus a

less informed one. The theory suggests that while the availability of signals varies, the
5Gupta et al. (2021) demonstrated that Prolific can be a reliable source of high-quality data. For

details on Prolific’s subject pool, see Palan and Schitter (2018). In all three of our studies, only US
subjects participated.
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non-instrumental value of being better informed does not fluctuate across different

scenarios, as long as the informational content of the signals remains constant.

According to expected utility theory, the decision-makers assign a probability p(ω)

to the state ω ∈ Ω to evaluate a lottery.

UEU(Li) ≡ E(u(Li)) =
∑
ω∈Ω

p(ω)u(Li|ω) = 0.5× u(100).

In this context, ω represents the color of the drawn ball. Importantly, from an ex-ante

perspective, the expected utility of lottery i with a signal si ∈ Si, which indicates

the selected box, aligns with the expected utility without the signal. The expected

utility, considering the signal, can be expressed as:

UEU(Li|Si) ≡ Esi [E(u(Li|ω, si)|si)] =
∑
ω∈Ω

∑
si∈Si

p(ω|si)u(Li|ω, si) = 0.7× u(100) ∀i

This formulation demonstrates that, irrespective of from which a signal is provided,

the expected utility for any given lottery remains constant. This equality underscores

the theoretical premise that the size of the signal space does not alter the expected

utility of participating in the lottery, assuming the signal’s information content is

fully integrated into the decision-making process.

Therefore, according to the expected utility theory, in our experiment, the value

of information V OI(Si|Li) is defined as

V OI(Si|Li) ≡ UEU(Li|Si)− UEU(Li) = 0.2× u(100) (1)

and constant at 20 for any lottery Li for the risk-neutral expected utility maximizer.

From this theory, we propose that if the value of information entirely dictates

the worth of a signal, i.e., WTP (Si|Li) = V OI(Si|Li), where WTP (Si|Li) represents

the willingness to pay for a signal s ∈ Si for lottery Li, then the willingness to pay

for signals across all four lotteries should be uniform. Therefore, we formulate the

8



following hypothesis:

Hypothesis 1. The value of information fully determines the worth of a signal.

Therefore, the size of the signal space does not influence the willingness to pay for the

signal: WTP (S1|L1) = WTP (S2|L2) = WTP (S3|L3) = WTP (S4|L4).

2.4 Results: Willingness to Pay Increases with Signal Space

Size

Lottery |Si| WTP (Si|Li) Number
1 2 23.6 179
2 3 24.9 179
3 4 25.8 179
4 5 29.8 179

Table 2: Elicited values for WTP (Si|Li).

Table 2 presents elicited values for the willingness to pay for a signal s ∈ Si for lottery

Li (WTP (Si|Li)), expressed in points, where |S| denotes the size of the signal space.

Surprisingly, subjects show a higher willingness to pay for signals when they are

associated with larger signal spaces.6 The Cuzick non-parametric trend test results

show that the size of the signal space is significant (p = 0.005).

Table 3 presents the regression results, showing a strong positive relationship be-

tween signal space size and willingness to pay for signals (F-test, p < 0.001). This

suggests that willingness to pay increases with the size of the signal space. Conse-

quently, we reject Hypothesis 1 and state Result 1.

Result 1. The willingness to pay for a signal increases with the size of signal space.
6Appendix A shows that subjects predominantly followed the signal when it was informative,

suggesting they comprehended the information structure. Appendix B further shows that subjects
choosing lotteries with larger signal spaces earned lower payoffs, consistent with the interpretation
that they overvalued such signals.
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WTP(Si|Li)
(1)

Signal Space Size 1.934∗∗∗
(0.395)

Constant 21.218∗∗∗
(1.650)

Observations 716
R-Squared 0.010

Notes: Robust standard errors clus-
tered by individual in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

Table 3: The effect of the size of signal space on the willingness to pay for a signal

The observed relationship ∂WTP (Si|Li)
∂|Si| > 0 motivates the key question of our paper:

why does the size of the signal space matter in our experiment? The remainder of

the paper addresses this question.

3 Robustness and Additional Experimental Evidence

To better understand the surprising pattern observed in the SPD, we conducted two

follow-up studies aimed at evaluating the plausibility of potential explanations.

3.1 Robustness Study: the SPD with Varying VOI

One possible explanation is that subjects may not fully understand the value of infor-

mation for the compounded lotteries, V OI(Si|Li). In the SPD, the value of informa-

tion was held constant across all lotteries, so it is unclear whether subjects respond to

variation in V OI(Si|Li). To investigate this, we conducted a robustness study using

lotteries with varying values of information. This design is referred to as SPD with

varying VOI.

The procedure of this study was identical to that of the SPD: subjects were asked

to submit their willingness to pay for signals in a series of lotteries. However, to
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Figure 3: Lotteries in the SPD with Varying VOI

examine whether subjects understood the instrumental value of information, we used

eight different lotteries with varying values of information, as illustrated in Figure 3.

If subjects correctly understood the framework, they would be more willing to pay

for signals with higher instrumental value.

Table 4 summarizes the details of the lotteries and reports the submitted values

for the willingness to pay for the signal in each lottery, WTP (Si|Li). Lotteries 1 to 4

each include two boxes—Box Rn and Box Bn—where n ∈ 5, 6, 7, 8, 9, 10, resulting in

a signal space of size 2. Lotteries 5 to 8 contain three boxes—Box Rn, Box Gn, and

Box Bn—corresponding to a signal space of size 3.

The fourth column reports the value of information for each lottery, V OI(Si|Li),

which serves as the theoretical benchmark for a risk-neutral utility maximizer. The

fifth column shows the submitted WTP (Si|Li) values. Consistent with theoretical

predictions, subjects were more willing to pay for signals with higher instrumental

value. A chi-square test rejects the null hypothesis that the willingness to pay was
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Questions Signal Space Size Winning Prob
V OI(Si|Li) WTP (Si|Li)With Signals

1 2 0.80 30 24.1
2 2 1.00 50 38.0
3 2 0.60 10 24.8
4 2 0.90 40 37.8
5 3 0.70 20 28.4
6 3 0.83 33.3 34.7
7 3 0.57 6.7 23.7
8 3 0.77 26.7 30.8

Table 4: V OI(Si|Li) and WTP (Si|Li)

submitted randomly (p < 0.001).

WTP(Si|Li)
(1) (2)

VOI(Si) 0.251∗∗∗ 0.273∗∗∗
(0.065) (0.067)

Signal Space Size 1.505
(1.062)

Constant 22.322∗∗∗ 17.969∗∗∗
(1.982) (3.719)

Observations 1040 1040
R-Squared 0.020 0.020

Notes: Robust standard errors clustered by indi-
vidual in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Table 5: The effect of the value of information on WTP

The regression results presented in Table 5 further indicate that subjects have an

understanding of the value of information in the signal purchasing environment. The

first row of the table suggests that the submitted values of WTP (Si|Li) are positively

correlated with the theoretical predictions V OI(Si|Li), which represent the value of

information for a risk-neutral individual in the expected utility model.7

7The second row of the table shows that the size of the signal space has no significant effect
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Therefore, we can reasonably conclude that the behavior observed in the SPD is

not driven by a misunderstanding of the signaling structure associated with compound

lotteries. Subjects appeared rational enough to understand the value of information

clearly and adjusted their willingness to pay accordingly.

Result 2. Willingness to pay for a signal is positively associated with its instrumental

value.

3.2 Lottery Purchasing Decision

In the SPD with varying V OI, we observe that WTP for a signal is positively related

to the signal’s value of information. However, the preference for larger signal spaces

in the SPD remains unexplained: why does WTP increase with the size of the signal

space, even when V OI is theoretically held constant and independent of signal space

size?

One possible explanation is that subjects mistakenly believe that signals from

larger signal spaces have greater instrumental value. This would imply ∂UEU (Li|Si)
∂|Si| > 0,

where UEU(Li | Si) denotes the ex-ante expected utility of the lottery conditional on

receiving a signal. This is a natural hypothesis to investigate, as the size of the signal

space does not directly affect V OI(Si | Li), but it may influence UEU(Li | Si), which

is the only component of V OI(Si | Li) that depends on signal space size, as shown in

Equation (1).

To examine this, we conducted an additional study: the Lottery Purchasing De-

cision (LPD). In the LPD, the focus shifted from assessing the value of signals in the

four lotteries to evaluating the value of the lotteries themselves, with signals provided

at no cost. The lotteries used in this study were identical to those in the SPD. Specif-

ically, subjects indicated their willingness to pay to participate in each lottery. Before

on the submitted value in this robustness study, although the estimates remain positive and are
consistent with the results from the SPD. This may be because the variation in signal space size in
this robustness study is limited (from 2 to 3), whereas in the SPD it ranges from 2 to 5.
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SPD

Box selected Signal Outcome

WTP for signals Prediction

LPD

Box selected Signal Outcome

WTP for lotteries Prediction

Figure 4: Comparison of Timelines: SPD vs. LPD

making their color prediction, they were informed which box had been selected. The

timeline for this study is shown in Figure 4.

To examine this, we conducted an additional study: the Lottery Purchasing De-

cision (LPD). In the LPD, the focus shifted from assessing the value of signals in

the four lotteries to evaluating the value of the lotteries themselves, with signals pro-

vided at no cost. The lotteries used in this study were identical to those in the SPD.

Subjects indicated their WTP to participate in each lottery, using the same BDM

mechanism as in the SPD, which we describe below. Since signals were provided at

no cost, there was no signal purchasing decision in this study. Aside from that, the

procedure was identical to the SPD. If subjects participated in a lottery, they were

informed which box had been drawn and then made their color prediction based on

that information. The timeline for this study is shown in Figure 4.

The BDM procedure in the LPD mirrored that of the SPD, as shown in Table 6.

Before engaging with the lotteries, subjects indicated the maximum number of points

they were willing to pay to play each lottery. After submitting their valuations for

all four lotteries, one was randomly selected. A random number between 1 and 100

was then drawn to serve as the substitute reward. If the bid exceeded this amount,

the subject participated in the lottery; otherwise, the substitute reward was given

instead. Upon participating, the subject was informed of the selected box and asked

14



Q# Option A Choices Option B

1 Playing the lottery Receiving 1 point
2 Playing the lottery Receiving 2 points
3 Playing the lottery Receiving 3 points
4 Playing the lottery Receiving 4 points
...

...
...

...
97 Playing the lottery Receiving 97 points
98 Playing the lottery Receiving 98 points
99 Playing the lottery Receiving 99 points
100 Playing the lottery Receiving 100 points

Table 6: The BDM mechanism in the LPD

to predict the color of the drawn ball.

Lottery |Si| WTP (Li|Si) Number
1 2 52.9 158
2 3 48.9 158
3 4 51.0 158
4 5 52.7 158

Table 7: Elicited values for V (Li|Si).

Table 7 presents the willingness to pay for each lottery given a signal (WTP (Li|Si)),

expressed in points. In the LPD, there is no clear association between the size of the

signal space and the valuation of equivalent lotteries, as confirmed by the Cuzick non-

parametric trend test (p = 0.574). This finding is further supported by the regression

analysis in Table 8, where the size of the signal space has no effect on the value of

lotteries, denoted as V (Si|Li).8

Result 3. The size of the signal space is not associated with the willingness to pay

for a lottery, given a signal.
8F-test p-values are 0.7502, 0.7504, and 0.7502 for each column.
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WTP(Li|Si)
(1)

Signal Space Size 0.160
(0.502)

Constant 50.978∗∗∗
(1.798)

Observations 632
R-Squared 0.000

Notes: Robust standard errors clus-
tered by individual in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

Table 8: The effect of |Si| on WTP

4 Complementary Mechanism: Non-Instrumental Val-

ues of Information

Our experimental findings suggest that subjects’ behavior cannot be fully explained

by classical expected utility theory or by the instrumental value of information alone.

In particular, willingness to pay for a signal in the SPD increases with the size of the

signal space—a pattern not observed in the LPD. These discrepancies suggest that

additional factors may influence subjects’ decision-making.

In this section, we propose an alternative theoretical framework that incorporates

a non-instrumental component into the valuation of information. Our conjectures

are premised on the idea that, beyond the instrumental benefits—such as improved

decision-making and reduced uncertainty—individuals derive extra value from acquir-

ing information per se. In other words, subjects may be motivated not only by the

practical utility of information but also by an inherent, non-instrumental desire for

knowledge, which could manifest as curiosity.

We stress that this perspective does not imply that subjects disregard to the in-

strumental value of information. As demonstrated in Section 3.1, subjects accurately

assess the instrumental benefits predicted by expected utility theory. Rather, our
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argument extends this view by suggesting that individuals also place value on the

mere resolution of uncertainty, regardless of its direct impact on decision outcomes.

Recent findings in neuroscience and psychology support this broader interpreta-

tion. For example, Bennett et al. (2016) and Gottlieb and Oudeyer (2018) show

that individuals are motivated by factors beyond the immediate practical benefits

of information. Similarly, Kobayashi and Hsu (2019) and Lau et al. (2020) provide

evidence that non-instrumental motives—such as pure curiosity—play a significant

role in information-seeking behavior.

By integrating these insights, we contend that subjects in our studies are influ-

enced by a non-instrumental desire for information. This perspective extends the

traditional expected utility framework and offers a more comprehensive understand-

ing of human information acquisition.

4.1 Empirical Evidence from the SPD

We conjecture that the non-instrumental value of information observed in our experi-

ment is driven by curiosity—a fundamental desire to reduce uncertainty, independent

of any direct impact on decision outcomes. This intrinsic motive leads individuals to

seek information even when it offers no instrumental benefit, consistent with recent

findings in neuroscience and psychology.

This form of curiosity depends on how uncertainty is framed within the decision

environment. In particular, when deciding whether to purchase a signal that reveals

the box in which the ball is located in the SPD, subjects appear to focus on the

uncertainty associated with the box.

To quantify this uncertainty, we employ Shannon’s entropy (Shannon, 1948),

which provides a measure of the unpredictability or information content of a ran-
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dom variable. Shannon’s entropy is defined as

H(X) = −
∑
x

p(x) log p(x),

where X denotes a random variable. We then use this measure to capture the non-

instrumental value of information by examining the reduction in uncertainty of X due

to the knowledge of another variable Y . This reduction is quantified by the mutual

information, which is given by

I(X;Y ) = H(X)−H(X | Y )

=

(
−
∑
x

p(x) log p(x)

)
−

(
−
∑
y

p(y)H(X | Y = y)

)

=
∑
y

p(y) [H(X)−H(X | Y = y)]

=
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
.

In this framework, the value of information is interpreted as the reduction in uncer-

tainty when transitioning from a scenario without the signal to one with the signal.

In the SPD, we let X correspond to the chosen box, denoted by Bi for lottery i.

For example, consider lottery 1, which has two boxes; its entropy is given by

H(B1) = −2

(
1

2
log

1

2

)
.

Similarly, lottery 2 has three boxes and its entropy is

H(B2) = −3

(
1

3
log

1

3

)
,
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so that

H(B1) < H(B2) < H(B3) < H(B4).

Since the signal Si fully reveals the selected box, the conditional entropy is

H(Bi | Si) = − (1 log 1) = 0.

Therefore, for lottery i in the SPD, the mutual information is

I(Bi;Si) = H(Bi)−H(Bi | Si) = H(Bi).

We summarize this argument in the following conjecture.

Conjecture 1 (Entropy-Based Valuation). A subject’s willingness to pay for a signal

in the SPD is positively related to the uncertainty of the box Bi, as measured by

H(Bi). Specifically, the willingness to pay increases in the mutual information, i.e.,

I(Bi;Si) = H(Bi)−H(Bi | Si). We call this non-instrumental value of information.

V(Si|Li)
(1)

NVOISPD 3.689∗∗∗
(0.766)

Constant 20.074∗∗∗
(1.785)

Observations 716
R-Squared 0.009

Notes: Robust standard er-
rors clustered by individual in
parentheses. *** p<0.01, **
p<0.05, * p<0.1

Table 9: The effect of the NVOI on the value of the signal space

Table 9 shows that our framework aligns with the experimental results. Here,

NV OISPD denotes the non-instrumental value of information I(Bi;Si) for each lottery

19



i, and the value of the signal in the SPD, V (Si|Li), is significantly positively correlated

with this measure.

The observation that a subject’s willingness to pay in the SPD increases with the

non-instrumental value of information I(Bi;Si) suggests that individuals value signals

not solely for their instrumental benefits—such as improved decision accuracy—but

also for their ability to reduce epistemic uncertainty. In other words, even when

the instrumental value remains constant across lotteries, subjects appear to assign

additional non-instrumental value to signals that resolve greater uncertainty.

4.2 Further Insights from the LPD

In an entropy-based approach, the domain over which entropy is evaluated is not fixed

but may depend on how the decision problem is framed. In other words, the relevant

source of uncertainty—what the individual is curious about—can shift depending on

the structure of the task.

In the SPD, when deciding whether to purchase a signal that provides information

about the box containing the ball, subjects may ask which box the ball is likely in,

focusing primarily on the uncertainty regarding the box. By contrast, in the LPD,

when deciding whether to purchase a lottery about the color of the ball, subjects

may ask which ball is likely to be chosen, concentrating instead on the uncertainty

regarding the ball.

Conjecture 2 (Entropy-Based Valuation). The subject’s willingness to pay for a

lottery in the LPD is associated with the uncertainty of ball Qi, measured by H(Qi),

for any lottery i.

Specifically, in the LPD, the willingness to pay would be positively associated with

the mutual information, which quantifies the reduction in uncertainty a ball Qi by

comparing the reference point, which is the state of uncertainty of without the signal,

to the updated state with the signal. This raises the question of what constitutes
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the natural reference point for subjects in evaluating the non-instrumental value of

information. We argue that it depends on the variable of interest.

In the SPD, as conjectured in Conjecture 1, subjects deciding whether to purchase

a signal focus on which box is selected. Their attention is directed primarily toward

the identity of the box, Bi. Therefore, any signal that provides information about

which box the ball is chosen from is considered valuable, as it reduces the uncertainty

regarding the box and aligns with the subject’s primary goal of identifying the box

where the ball is located.

By contrast, in the LPD, not all signals are necessarily regarded as valuable. Here,

subjects focus on the color of the ball rather than the box (note that the term “signal”

is not even used in the LPD). From this perspective, the gray box and the red or blue

boxes may be perceived differently. For example, subjects who pay the entry fee to

participate in the lottery might view a winning probability of 50% as a disadvantage

relative to their expectations. More specifically, we assume that subjects anticipate

at least a 50% chance of winning when they choose to participate, and thus take this

as a reference point. Accordingly, their perceptions of the gray box and the other

boxes might differ.

To formally incorporate reference point considerations into our framework, we

define the reduction in uncertainty about a variable X conditional on information

about another variable Y as follows:

v(Y |X, r) =

(r(X)−H(X|Y ))ρ if H(X|Y ) ≤ r(X)

λ(−(r(X)−H(X|Y ))ρ if H(X|Y ) > r(X),

where r(X) is the reference level of uncertainty on X and H(X|Y ) is the uncer-

tainty of X given Y . Here, ρ is the parameter that captures the curvature of the

value function, reflecting diminishing sensitivity to changes in uncertainty, while λ

captures the asymmetry in responses, assigning greater weight to increases in uncer-

tainty above the reference point. This framework captures how individuals evaluate
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reductions in uncertainty when they have non-instrumental motivations, emphasizing

the disproportionate reaction to uncertainty that exceeds the reference point. It also

highlights how individuals may place extra value on reductions in uncertainty below

the reference level and respond more strongly when uncertainty rises above that level.

Now we have the following conjecture:

Conjecture 3 (Reference Dependence). The subject’s willingness to pay is associated

with the expected value of uncertainty reduction given the reference point r, v̂(Si|X, r).

We refer to this as the Non-instrumental Value of Information with Reference Depen-

dence.

In the SPD, the variable X is the chosen box, Bi for the lottery i.

H(B1) = −2

(
1

2
log

1

2

)
< H(B2) = −3

(
1

3
log

1

3

)
< H(B3) < H(B4)

H(Bi|Si) = − (1 log 1) = 0

As argued above, the reference point for Li in SPD is the uncertainty without the

information, H(Bi). Therefore,

v̂(Si|Bi, r) ≡
∑
si

p(si) [r(Bi)−H(Bi|Si = si)]
ρ

=
∑
si

p(si) [H(Bi)−H(Bi|Si = si)]
ρ

Then, we get the following order for the non-instrumental value of information,

NVOI:

v̂(S1|Bi, 0) < v̂(S2|Bi, 0) < v̂(S3|Bi, 0) < v̂(S4|Bi, 0)

This order reflects the increasing value of information as the uncertainty of the

chosen box Bi increases. The calculation shows how the non-instrumental value of

information is higher for lotteries with greater initial uncertainty, given that the
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reduction in uncertainty (from the reference point H(Bi)) is more significant. This

aligns with the conjecture that subjects’ willingness to pay is associated with the

expected value of uncertainty reduction.

In the LPD, the random variable X is the chosen ball, Qi for lottery i.

H(Qi) = −2

(
1

2
log

1

2

)
= 1 for all i.

H(Q1|S1) = −2 ((.7× .5) log(.7× .5) + (.3× .5) log(.3× .5))

For the subjects in the LPD, any signal that leads to a higher degree of uncertainty

than 50:50 odds is considered a “loss.” Therefore, the reference point r(Qi) should be

less than H(Qi) = 1.

v̂(Si|Qi, r) ≡
∑
si

p(si) [r(Qi)−H(Qi|Si = si)]
ρ

By taking r(Qi) = 0.99, we get the following order in a large set of parameter values:

v̂(S2|Qi, .99) < v̂(S4|Qi, .99) < v̂(S3|Qi, .99) < v̂(S1|Qi, .99) (2)

This ordering reflects the non-instrumental value of information in the LPD sce-

nario, considering the reference point for uncertainty reduction. By setting the refer-

ence point slightly below the maximum entropy, we capture the subjects’ preference

for signals that significantly reduce uncertainty.

Table 10 examines the extent to which our framework aligns with the experi-

mental results. NV OISPD and NV OILPD represent the non-instrumental value of

information for the SPD and LPD, respectively, as defined by our framework, which

incorporates uncertainty reduction and the reference point. The value of the signal

in the SPD (V (Si|Li)) is significantly positively correlated with NV OISPD, but not
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V (Si|Li) V (Li|Si)
(1) (2)

NVOISPD 1.933∗∗∗ 0.675
(0.414) (0.525)

NVOILPD -0.002 1.287∗∗
(0.464) (0.545)

Constant 21.224∗∗∗ 46.473∗∗∗
(2.214) (2.577)

Observations 716 632
R-Squared 0.010 0.004

Notes: Robust standard errors clustered by
individual in parentheses. *** p<0.01, **
p<0.05, * p<0.1

Table 10: The effect of the NVOI on the value of the signal space and the lottery

with NV OILPD. By contrast, the regression results show that the value of the lot-

tery in the LPD (V (Li|Si)) is significantly correlated with NV OILPD, but not with

NV OISPD. These results demonstrate that our framework is consistent with the

experimental findings.

Our findings offer important insights into how individuals value information.

Firstly, they highlight that individuals also place weight on non-instrumental mo-

tivations when evaluating information, even when instrumental information is fixed.

Results from the SPD indicate that subjects assign greater non-instrumental value to

signals offering substantial uncertainty reduction, reflecting curiosity-driven behavior

independent of immediate practical utility. Importantly, we also find evidence from

the LPD that non-instrumental value matters: even when signals are freely provided,

individuals’ willingness to pay for participation in the lottery is systematically related

to how much uncertainty the signals resolve.

These results underscore the contextual nature of information valuation, demon-

strating that identical information can be perceived differently depending on whether

individuals actively seek it or passively receive it. As a result, economic and be-

havioral models of information acquisition should integrate non-instrumental moti-
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vational factors, particularly curiosity and reference-dependent valuations, to more

accurately predict real-world decision-making behaviors. Incorporating Shannon’s

entropy and reference dependence into theoretical frameworks thus provides a com-

prehensive and robust mechanism for capturing the nuanced ways in which individuals

value information beyond mere instrumental utility.

5 Discussion

5.1 Complexity Aversion

At first glance, one might interpret the observed behavior in the Signal Purchasing

Decision (SPD) as an instance of complexity aversion (Oprea, 2020; Gabaix, 2025).

In this interpretation, subjects might value signals more as the number of boxes (i.e.,

possible states) increases, not necessarily because of the information conveyed, but

because a more complex environment creates cognitive burden or discomfort. Thus,

they may be willing to pay more for signals in larger signal spaces to simplify the

decision problem. This interpretation seems plausible given prior evidence that people

often avoid cognitively demanding tasks and may favor simpler options in decision

environments (e.g., Simon, 1955; Caplin and Dean, 2015).

However, we argue that such an explanation is insufficient in our setting and that

a more precise account is needed. The concept of uncertainty, as formally defined in

information theory by Shannon (1948), provides a better explanation of the observed

behavior. Shannon’s entropy, defined as H(X) = −
∑

x p(x) log p(x) for a random

variable X, quantifies the average unpredictability—or uncertainty—of outcomes. In

our experiments, the signals reduce entropy by providing information about a hidden

variable (e.g., which box was chosen), and this reduction in entropy corresponds to

what we define as the value of information. Importantly, Shannon entropy is not about

complexity in the cognitive sense, but about the statistical uncertainty inherent in a

distribution.
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In contrast, complexity in behavioral economics typically refers to the difficulty

of representing, processing, or acting upon a decision structure—often arising from

features such as nested conditionals, extensive branching, unfamiliar choice architec-

tures, or memory demands. In the literature, complexity is thus defined either as the

structural and cognitive cost of executing or understanding a rule, or as a disutil-

ity term directly incorporated into decision-making models (e.g., Oprea, 2020; Guan

and Oprea, 2024; Gabaix, 2025). However, while the number of boxes in our setting

increases the entropy of the underlying state space, it does not increase the procedu-

ral or representational complexity faced by subjects. The task remains simple and

transparent across conditions, and subjects do not face additional reasoning steps or

memory demands as the number of boxes increases. Therefore, what may appear

as complexity aversion is more accurately understood as a preference for uncertainty

reduction.

Taken together, the observed increase in subjects’ willingness to pay for signals

from larger signal spaces in the SPD is more convincingly explained by a preference

for reducing uncertainty rather than by an aversion to complexity.

5.2 Cumulative Prospect Theory

Given that our proposed mechanism incorporates reference dependence, it is natural

to consider whether Cumulative Prospect Theory (CPT), proposed by Kahneman

and Tversky (1992) as an extension of the original framework introduced in Kahne-

man and Tversky (1979), could also explain the behavioral patterns observed in our

experiments. As an extension of the original prospect theory, CPT accommodates

nonlinear probability weighting and differential sensitivity to gains and losses, provid-

ing a more flexible framework than expected utility theory for modeling choice under

risk.

While CPT captures many behaviors under risk, it focuses on instrumental out-

comes and does not account for the intrinsic or non-instrumental motives highlighted
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in our study. Using standard parameter values from the literature, CPT yields iden-

tical predictions for both the SPD and the LPD, as it evaluates signal value solely

based on its effect on expected outcomes. Detailed analysis and resulting preference

orderings are provided in Appendix C.

This consistency in predictions contrasts with our empirical findings: subjects dis-

play a distinct preference for larger signal spaces in the SPD but not in the LPD, even

when the instrumental value of information is held constant. CPT cannot account

for this divergence without assuming that decision-makers fundamentally shift their

underlying preferences or utility parameters between tasks—an assumption that is

neither parsimonious nor theoretically grounded.

In contrast, our framework accounts for the behavioral differences by allowing

both the reference point and the focus of evaluation to shift with the decision con-

text. Specifically, in the SPD, the subject’s attention is directed toward resolving

uncertainty about the identity of the box, whereas in the LPD, it shifts to the color

of the ball, which is more directly tied to the final payoff. Because of this contextual

shift, individuals assess information in relation to different types of uncertainty. This

allows a single mechanism—grounded in Shannon’s entropy and reference-dependent

valuation—to account for both patterns without modifying core parameters. In this

view, the observed preference for signals from larger spaces in the SPD is better un-

derstood as a manifestation of curiosity about a particular dimension of uncertainty.

5.3 Ambiguity Attitudes

One might interpret the variation in willingness to pay for signals, despite equal in-

strumental value, as a failure to reduce compound lotteries to their simple equivalents

(for example, Lottery 3 can be reduced to Lottery 1). According to Halevy (2007),

ambiguity neutrality is strongly associated with the ability to perform such reduc-

tions accurately. That is, ambiguity-neutral individuals are expected to behave in line

with expected utility theory, whereas ambiguity-averse or ambiguity-seeking individ-
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uals are less likely to correctly reduce compound lotteries to their simple equivalents.

To assess this possibility, we measured subjects’ ambiguity attitudes using a canon-

ical Ellsberg task (Ellsberg, 1961). We then categorized them into ambiguity-averse,

-neutral, or -seeking types and examined whether these attitudes systematically af-

fected their willingness to pay for signals (V (Si|Li)) or lotteries (V (Li|Si)). As de-

tailed in Appendix D, we find no statistically significant difference in valuation across

ambiguity types. In particular, the tendency to place higher value on signals from

larger signal spaces was consistent regardless of ambiguity attitude.

These findings suggest that, unlike the patterns suggested by Halevy (2007), am-

biguity neutrality does not predict adherence to expected utility theory in our set-

ting. Instead, our results support the idea that signal evaluation in environments

with structured uncertainty reflects a different psychological mechanism—namely, a

preference for uncertainty reduction as captured by Shannon entropy, combined with

reference-dependent evaluation. Thus, while ambiguity attitudes may explain some

deviations from expected utility in classic compound lottery settings, they do not

account for the distinctive signal preferences observed in our study.

6 Connections to Existing Literature

Our study contributes to several strands of work on information acquisition and valua-

tion. In much of the signaling literature, the structure of the signal space is treated as

secondary to its informativeness. Canonical models are typically framed with the sig-

nal space matching the action space for equilibrium analysis (Spence, 1973; Kamenica

and Gentzkow, 2011; Heumann, 2020). Our results suggest that the size of the signal

space may influence individuals’ valuation of information, even when informativeness

is held constant.

This pattern aligns with a growing body of work on non-instrumental information

demand and curiosity. Behavioral and neuroscientific studies suggest that individuals
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derive utility from information itself, even when it has no impact on choices or out-

comes (Bennett et al., 2016; Gottlieb and Oudeyer, 2018; Kobayashi and Hsu, 2019;

Lau et al., 2020). Our entropy-based framework formalizes this motivation, showing

that signals from larger spaces reduce more uncertainty and are therefore perceived as

more valuable. Our findings also build on theories of reference-dependent preferences

in information valuation. We show that individuals evaluate uncertainty reduction

relative to context-dependent reference points, in line with behavioral theories of

framing and reference dependence (Kőszegi and Rabin, 2007), and with psychological

accounts of information valuation (Golman et al., 2017). Taken together, our findings

underscore the role of context in shaping how uncertainty reduction is perceived and

valued.

Finally, our results align with menu-dependent preference models, where the struc-

ture of the option set influences how individuals perceive and value alternatives

(Masatlioglu et al., 2012). In our setting, a larger signal space appears to serve

as a cue for increased informational richness, even when the actual informativeness

is unchanged. Together, these connections highlight the need to account for non-

instrumental motives—such as curiosity and reference-dependent reasoning—when

modeling how individuals acquire and evaluate information.

7 Conclusion

This paper investigates whether the size of the signal space influences how individ-

uals value informative signals when their informational value is held constant. We

designed a controlled experiment to examine this question in two settings: the Signal

Purchasing Decision (SPD), where subjects pay for signals, and the Lottery Purchas-

ing Decision (LPD), where subjects pay for equivalent lotteries.

In the SPD, subjects exhibited a higher willingness to pay for signals from larger

signal spaces, even though the signals provided the same informational value. In
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contrast, no such pattern emerged in the LPD. These findings suggest that preferences

for signal space size are shaped not only by instrumental value of information but

also by the context in which the information is acquired.

To account for this behavior, we develop a theoretical framework that incorporates

non-instrumental motivations—particularly the desire to reduce uncertainty. Using

Shannon’s entropy, we formalize this as a preference for signals that resolve more

uncertainty, even when they do not improve expected outcomes.

Our analysis considers a setting in which signals are drawn from a uniform distri-

bution. When the distribution is highly skewed, however, receiving a signal from a

larger signal space does not necessarily imply a greater reduction in uncertainty—for

example, when many of the signals in the larger space are extremely unlikely to oc-

cur. Investigating how the distribution of signals interacts with signal space size in

shaping individuals’ willingness to pay is a promising direction for future research.

More broadly, there is room for further research on how the signal space influences

information acquisition and decision-making. In our experiment, we limited the action

space to binary choices and capped the number of possible signals at five to maintain

parsimony and keep the design focused. Relaxing these assumptions—for example,

by allowing richer action or signal spaces—may uncover further insights. We hope

our study encourages future work on the role of signal space in shaping information

demand and belief formation.
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A Predictions Following Signals

Table 11 shows subjects’ prediction decisions after the signal stage. The majority

of subjects followed the signal when their signal was informative (Box R or Box

B). This suggests that the subjects comprehended the information structure of the

experiments. In both studies, the chi-square test and Fisher’s exact test indicate

that the null hypothesis of random prediction by subjects can be rejected. (p-values

< 0.001 for both studies.)

Table 11: Predictions following signals in the SPD and the LPD

Predictions Box R Box B Box G No Signal

SPD Red 16 (94.1%) 3 (15.8%) 12 (85.7%) 85 (65.9%)
Blue 1 (5.9%) 16 (84.2%) 2 (14.3%) 44 (34.1%)

LPD Red 37 (94.9%) 4 (11.1%) 8 (72.7%) N/A
Blue 2 (5.1%) 32 (88.9%) 3 (27.3%) N/A

Chi-square test p-value = 0.000

The purpose of Table 12 is to investigate whether the signal space size influences

the prediction decisions. The correct decision rate is defined as whether the subject’s

prediction aligns with the signal suggested after receiving Box R or Box B as a

signal. Results show that there is no correlation between the correct decision rate

and the signal space size. (Chi-square test p-value and Fisher’s exact test p-value are

approximately 0.513 and 0.672, respectively).

Table 12: Correct decision rate with each signal

Signal Received s1 s2 s3 s4 Total

Correct 9 (81.8%) 3 (100.0%) 11 (84.6%) 9 (100.0%) 32 (88.9%)
Incorrect 2 (18.2%) 0 (0.0%) 2 (15.4%) 0 (0.0%) 4 (11.1%)

Total 11 3 13 9 36

Chi-square test p-value = 0.513
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B Payoffs and Signal Space Size

This section examines whether the preference for larger signal spaces harms infor-

mation buyers. Table 13 displays subjects’ payoffs (in points) in both the SPD and

the LPD. Note that profits were generally higher in the SPD due to the 100-point

endowment.

In the SPD, the highest average profit was earned by subjects who played the

simplest lottery (Lottery 1), suggesting that participants earned lower profits when

choosing lotteries with larger signal spaces. However, this pattern did not emerge in

the LPD, where payoffs did not systematically decrease with signal space size.

SPD LPD
Lottery |S| Payoff Std. Error Number Payoff Std. Error Number

1 2 160.9 7.1 48 71.6 6.2 32
2 3 141.6 7.5 50 80.0 4.5 43
3 4 140.9 7.0 46 67.0 6.2 40
4 5 142.0 8.2 35 72.8 5.4 43

Total 146.7 3.7 179 73.1 2.8 158

Table 13: Average payoffs by lottery in the SPD and the LPD

Table 14 reports the regression results to clarify whether and when signal space

size affects the payoffs. Columns (1) and (3) estimate the direct effect of signal space

size. The results show that only in the SPD does signal space size significantly affect

payoffs: purchasing signals from larger signal spaces is associated with lower earnings.

Columns (2) and (4) examine the effect of playing the simplest lottery (Lottery

1). In the SPD, subjects who chose more complex lotteries (Lotteries 2–4) earned, on

average, 19.4 points less than those who played Lottery 1 (F-test p-value = 0.0202).

In contrast, Column (4) shows that this pattern disappears in the LPD.

These findings suggest that subjects tend to overvalue signals when the signal

space is larger, leading them to overpay for information and ultimately earn lower
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Payoffs in SPD Payoffs in LPD

(1) (2) (3) (4)
Signal Space Size -6.118∗ -1.168

(3.380) (2.543)
Simplest Lottery 19.438∗∗ -1.788

(8.293) (6.857)
Constant 161.231∗∗∗ 141.458∗∗∗ 76.114∗∗∗ 73.444∗∗∗

(9.003) (4.326) (6.954) (3.136)
Observations 716 716 632 632
R-Squared 0.017 0.030 0.001 0.000

Notes: Robust standard errors clustered by individual in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

Table 14: Effect of signal space size on payoffs in the SPD and the LPD

payoffs.

C Predictions from Cumulative Prospect Theory

To examine whether Cumulative Prospect Theory (CPT) can account for the behav-

ioral patterns observed in our experiment, we applied the standard functional form of

CPT introduced by Kahneman and Tversky (1992). The utility of a lottery is given

by:

UCPT =
n∑

i=−m

πiv(xi), (3)

where v(x) is the value function and πi are decision weights based on cumulative

probabilities. The value function is defined as:

v(x) =

xα if x ≥ 0,

−λ(−x)β if x < 0,

(4)
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and the decision weights for gains and losses are computed using:

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
, w−(p) =

pδ

(pδ + (1− p)δ)1/δ
. (5)

We used the parameter values estimated in Kahneman and Tversky (1992):

Table 15: Parameter values from Kahneman and Tversky (1992)

Parameter Description Value

α curvature for gains 0.88
β curvature for losses 0.88
λ loss aversion 2.259

γ probability weighting (gains) 0.61
δ probability weighting (losses) 0.69

We assumed the cost of acquiring a signal to be 20, corresponding to the expected

value of information under risk neutrality. With these values, CPT predicts the

following preference orderings in both the SPD and LPD:

V (S1|L1) ≥ V (S3|L3) ≥ V (S4|L4) ≥ V (S2|L2), (6)

V (L1|S1) ≥ V (L3|S3) ≥ V (L4|S4) ≥ V (L2|S2).

These rankings remain consistent across contexts, as CPT evaluates information

purely in terms of its instrumental value in shaping expected outcomes. This unifor-

mity stands in contrast to our experimental findings.
9A meta-analysis by Brown et al. (2022) finds an average estimate of λ = 1.97. Using this

alternative value does not change the predicted ranking.
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D Measuring Ambiguity Attitudes

To assess whether individual ambiguity attitudes are associated with signal valuation

patterns, we administered a canonical Ellsberg task (Ellsberg, 1961) after the main

decision tasks.

Subjects chose between two pairs of options: A vs. B, and C vs. D, as shown

in Table 16. Preferring A over B and D over C is typically interpreted as ambiguity

aversion.

Options

Option A receiving 100 points if a blue ball is drawn.
Option B receiving 100 points if a red ball is drawn.

Option C receiving 100 points if a blue or yellow ball is drawn.
Option D receiving 100 points if a red or yellow ball is drawn.

Table 16: Ellsberg questions

Ambiguity SPD LPD
Attitude Number Percentage Number Percentage

Averse 72 40.2% 55 34.8%
Neutral 85 47.5% 84 53.2%
Seeking 22 12.3% 19 12.0%

Total 179 100.0% 158 100.0%

Table 17: Ambiguity attitudes

Table 17 and Table 18 respectively describe the ambiguity attitudes of subjects,

and the values of V (Si|Li) and V (Li|Si) conditional on different ambiguity attitudes.

The overall patterns of the willingness to pay for signals and lotteries remain consis-

tent across different ambiguity attitudes. The F-tests’ p-values indicate that there is

no significant effect of ambiguity attitude on V (Si|Li) or V (Li|Si).

To formally examine these relationships, we estimate the following linear regres-
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Attitude V (S1|L1) V (S2|L2) V (S3|L3) V (S4|L4) V (L1|S1) V (L2|S2) V (L3|S3) V (L4|S4)

Averse 22.8 23.8 24.4 29.9 55.7 47.7 49.5 55.8
Neutral 23.8 26.9 24.9 29.2 50.7 48.8 50.8 50.8
Seeking 25.5 28.7 26.5 31.4 54.2 52.9 55.8 52.2

Total 23.6 25.9 24.9 29.8 52.9 48.9 51.0 52.7

F-test p-value 0.8142 0.5988

Table 18: The submitted values of V (Si|Li) and V (Li|Si) for different ambiguity
attitudes

sion model:

yin = β0 + β1|S|i + β2AmbNeutraln + β3|S|i ∗ AmbNeutraln + ϵin. (7)

Here, yi,n represents the value assigned to either pi or Vi by individual n, while

AmbNeutraln is a dummy variable that indicates whether individual n is ambiguity

neutral or not. Standard errors are clustered by subject.

V (Si|Li) V (Li|Si)

(1) (2) (3) (4)
Signal Space Size 1.934∗∗∗ 2.030∗∗∗ 0.160 0.077

(0.395) (0.551) (0.502) (0.727)
Ambiguity Neutrality 0.862 -2.698

(3.326) (3.607)
Signal Space Size ×
Ambiguity Neutrality -0.203 0.156

(0.792) (1.006)
Constant 21.218∗∗∗ 20.809∗∗∗ 50.978∗∗∗ 52.412∗∗∗

(1.650) (2.154) (1.798) (2.661)
Observations 716 716 632 632
R-Squared 0.010 0.010 0.000 0.003

Notes: Robust standard errors clustered by individual in parentheses. Columns
(2) and (5) cannot include subject fixed effect because the ambiguity attitude is
measured at the subject level *** p<0.01, ** p<0.05, * p<0.1

Table 19: The effect of the size of signal space and ambiguity neutrality on the value
of the signal space and the lottery

The third row of Table 19 shows that preferences over signal space size are inde-
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pendent of ambiguity neutrality. This contrasts with the findings of Halevy (2007),

who report a strong link between ambiguity neutrality and the simplification of com-

pound lotteries.
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